On non-separable Banach spaces with a symmetric basis
نویسندگان
چکیده
منابع مشابه
Non - separable Banach spaces with non - meager Hamel basis
We show that an infinite-dimensional complete linear space X has: • a dense hereditarily Baire Hamel basis if |X| ≤ c; • a dense non-meager Hamel basis if |X| = κ = 2 for some cardinal κ. According to Corollary 3.4 of [BDHMP] each infinite-dimensional separable Banach space X has a non-meager Hamel basis. This is a special case of Theorem3.3 of [BDHMP], asserting that an infinite-dimensional Ba...
متن کاملEvolution inclusions in non separable Banach spaces
We study a Cauchy problem for non-convex valued evolution inclusions in non separable Banach spaces under Filippov type assumptions. We establish existence and relaxation theorems.
متن کاملNon Dentable Sets in Banach Spaces with Separable Dual
A non RNP Banach space E is constructed such that E∗ is separable and RNP is equivalent to PCP on the subsets of E. The problem of the equivalence of the Radon-Nikodym Property (RNP) and the Krein Milman Property (KMP) remains open for Banach spaces as well as for closed convex sets. A step forward has been made by Schachermayer’s Theorem [S]. That result states that the two properties are equi...
متن کاملLfc Bumps on Separable Banach Spaces
In this note we construct a C∞-smooth, LFC (Locally depending on Finitely many Coordinates) bump function, in every separable Banach space admitting a continuous, LFC bump function.
متن کاملOn Asymptotically Symmetric Banach Spaces
A Banach space X is asymptotically symmetric (a.s.) if for some C <∞, for all m ∈ N, for all bounded sequences (xj)j=1 ⊆ X, 1 ≤ i ≤ m, for all permutations σ of {1, . . . ,m} and all ultrafilters U1, . . . ,Um on N, lim n1,U1 . . . lim nm,Um ∥∥∥∥ m ∑ i=1 xini ∥∥∥∥ ≤ C lim nσ(1),Uσ(1) . . . lim nσ(m),Uσ(m) ∥∥∥∥ m ∑
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1975
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-53-3-253-263